
Henrik Warne, SAST Stockholm, Q2 2019

About me
 Software developer at TriOptima in Stockholm

 Previously: Symsoft, Tilgin, Ericsson

 Programming for more than 25 years

 Currently: Python

 Previously: Java, C++, PLEX

 @henrikwarne

1. Tracking interesting bugs
 What bugs are interesting?

 Why – helps me learn, can review later

 How – entries in bugs.txt (a plain text file)

Entry template
-------template begin---
Date:
Symptom:
Cause:
How found:
Fix:
Fixed in file(s):
Caused by me:
Time taken to resolve bug:
Lessons:
------------------ bug separator ----------------------------------

-------template end--

Example bug (1)
Tag-length-value (TLV) messages.

Use length to skip unwanted data elements.

Example bug (2):
Date:

2004-08-17

Symptom:

Infinite loop when decoding Q.931 message

Cause:

When an unknown element id is found in a Q.931 message, we try to skip it by
reading the length, and advancing the pos pointer that many bytes.

However, in this case the length was zero, causing us to try to skip the same
element id over and over.

Example bug (3):
How found:

This happened during parsing of a setup message taken from an Ethereal

trace from Nortel. Their message was 1016 bytes long (it included a lot

of fast start elements), but our MSG_MAX_LEN was 1000. Normally we then

receive a truncated message from common/Communication.cxx, but now, when

fed directly in to be parsed, memory past the end of the array was accessed,

and it happened to be zero, exposing this problem.

To find it, I just added a few print outs in the q931 parsing code. But it

was lucky that the data happened to be zero.

Example bug (4):
Fix:

If the length given is zero, set it to one. This way we always move forward.

Fixed in file(s):

callh/q931_msg.cxx

Time taken to resolve bug:

1 hour

Lessons:

Trusted the data received in an incoming message. It's not just giving huge
numbers that can cause problems. Indicating a length of zero could be just as bad.

Tips
 Write it down as soon as possible (< 1 day after)

 Act of writing clarifies thinking – try it

 You decide what bugs are interesting

Stats

0

5

10

15

20

25

30

35

40

45

50

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Bugs per year

Bugs

Stats

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 > 24

Hours to resolve

Frequency

2. Lessons (15 years, 200 bugs)

Coding
 1. Event order

Arrive in a different order?
Never received?
Twice in a row?
Not normally, but bugs in other parts can make it happen

 2. Too early
Special case of event order
Traffic before all config is done
Put in a list – already marked as ”down”

Coding
 3. Silent failures

Everybody knows – but still happens
Check result of system calls
Explicit error – then add ways to recover

 4. If
Nested if:s
if (a or b), if (x) else if (y), if (x, y, z) if (x, z, w)…
Rewrite to simplify, unit test

Coding
 5. Else

Usually when if, also need else
Related: setting a flag – when should it be cleared

 6. Logging
Not too much, not too little
Visibilty needed when things don’t work

Coding
 7. Changing assumptions

Easy to change all code dependencies
Hard to find all implicit assumptions
When should this be detected?

Testing
 8. Zero and Null

String – both null and length zero
Nothing – no bytes sent over TCP connection
Both in automatic checks, exploratory tests

 9. Add and remove
New config profile – so create and add
Try removing as well

Testing
 10. Error handling

Hard to test – separate action from triggering it
Flip a condition – if error_count > 0 to == 0

 11. Random input (fuzzing)
Only applicable in some cases, but big payoff
H.323 binary encoding of messages
Generate randomized phone calls

Testing
 12. Check what shouldn’t happen

Natural to check what should happen – but also reverse

 13. Own tools
SIP protocol testing – customized (valid) replies
Command line tool for API calls
Start small, gradually add more

Testing
Testing wont find all bugs.

Routing numbers – first dynamic digit lost. Worked
100 times, then failed 900 times.

Debugging
 14. Discuss

By far most common lesson
Especially for hardest bugs
Colleagues don’t even have to know code in question

 15. Pay close attention
Often made false assumptions
Other exception thrown
Never got to method I thought
Different version of the SW running
Faulty printout – print ”a=%s” % b

Debugging
 16. Most recent change

Only logging – but NullPointerException for message
Could be a merge with old commits
Continuous delivery helps – smaller deltas

 17. Believe the user
”Impossible – must have done something wrong”
Used in unanticipated way

Debugging
 18. Test the fix

Recreate the problem (if you can’t, means something)
Apply the fix
Problem gone

Recap
 Easy to do – use a simple text file

 Makes you reflect on the bugs

 What lessons are learnt

 Optional: review periodically

Questions?

