
Automatic testing of a heavily integrated system

A case-study

Jörgen Andersson

• Systems Architect

• Enthusiastic Developer

• Tools and Processes Team

• 19 years of enterprise

development

• Complex administrative systems

• Big fan of Spring Boot, automatic

testing and continuous delivery

jorgen.andersson@pensionsmyndigheten.se

@se_thinking

~50 dev/test in 6 teams

~500.000 lines of code

~200 automated processes

2 to 150 conditions in each

~4.100 conditions in total

a few ways in

~25 outgoing integrations

~100 outgoing SOAP/REST calls

~5.400 automated system tests

~7 h execution time

~Continuous Delivery ->
“Frequent releases”

smoke test on every commit
full test run every night

delivery to production every week

But
why?

“Always right, at the right time”

“Frequent releases”
-> Steady flow of improvements

System 1

System 3

System 2

System 4

System ..

System …

Test
client

SUT

The Dependency Problem

System 1

System 3

System 2

System 4

System ..

System …

Test
client

SUT
!

- How to find proper test data?

The Bubble

System 1

System 3

System 2

System 4

System ..

System …

Test
client

System 1

System 3

System 2

System 4

System ..

System …

SUT

mock

mock
mock

mock
mock
mock

Test data
(responses)

The Growing Problem

System 1

System 3

System 2

System 4

System ..

System …

Test
client

System 1

System 3

System 2

System 4

System ..

System …

SUT

mock

mock
mock

mock
mock
mock

• Not enough test data

• Inflexible data

• Hard to change

• Mock-files growing very large

• Mock replacing parts of SUT

TestLocal.mock

System 1

System 3

System 2

System 4

System ..

System …

System 1

System 3

System 2

System 4

System ..

System …

SUT

mock

mock
mock

mock
mock
mock

S

e

r

v

i

c

e

M

o

c

k

e

r
Insert mock response

Test
client

Test data
(mock
responses)

TestLocal.mock

System 1

System 3

System 2

System 4

System ..

System …

System 1

System 3

System 2

System 4

System ..

System …

SUT

S

e

r

v

i

c

e

M

o

c

k

e

r
Insert mock response

RequestKey:
• System name
• Method/Resource name
• HTTP-verb
• Request parameters

Test
client

Test data
(mock
responses)

The Hard-coded Problem

System 1

System 3

System 2

System 4

System ..

System …

System 1

System 3

System 2

System 4

System ..

System …

SUT

S

e

r

v

i

c

e

M

o

c

k

e

r

Test
client

Test data
(mock
responses) • Complete responses hard-coded

• Readability – which values are

important for this test?

• Hard work as APIs changes

• Still hard to find new test data

The Decoupled Solution

System 1

System 3

System 2

System 4

System ..

System …

System 1

System 3

System 2

System 4

System ..

System …

SUT

S

e

r

v

i

c

e

M

o

c

k

e

r

RequestKey:
• System name
• Method/Resource name
• HTTP-verb
• Request parameters

Test
client

Test data
(mock
responses)

Test Data
Repository

The Decoupled Solution

System 1

System 3

System 2

System 4

System ..

System …

System 1

System 3

System 2

System 4

System ..

System …

SUT

S

e

r

v

i

c

e

M

o

c

k

e

r

Test
client

Test Data
Repository

JSON search document
+ original response

Search

RequestKey:
• System name
• Method/Resource name
• HTTP-verb
• Request parameters

Dynamic Test Data

The Decoupled Solution

System 1

System 3

System 2

System 4

System ..

System …

System 1

System 3

System 2

System 4

System ..

System …

SUT

S

e

r

v

i

c

e

M

o

c

k

e

r

Test
client

Test Data
Repository

Search

Dynamic Test Data

JSON search document
+ original response

RequestKey:
• System name
• Method/Resource name
• HTTP-verb
• Request parameters

GET gl2search_ah-18_10/_search
{
"query": {"match_all": {}}
}

Test Data
Repository

The Decoupled Solution

System 1

System 3

System 2

System 4

System ..

System …

System 1

System 3

System 2

System 4

System ..

System …

SUT

S

e

r

v

i

c

e

M

o

c

k

e

r
Insert response modification

Test
client

Test Data
Repository

Search

Dynamic Test Data

JSON search document
+ original response

RequestKey:
• System name
• Method/Resource name
• HTTP-verb
• Request parameters

The Decoupled Solution

System 1

System 3

System 2

System 4

System ..

System …

System 1

System 3

System 2

System 4

System ..

System …

SUT

S

e

r

v

i

c

e

M

o

c

k

e

r
Insert response modification

Test
client

Test Data
Repository

Search

Dynamic Test Data

JSON search document
+ original response

RequestKey:
• System name
• Method/Resource name
• HTTP-verb
• Request parameters

Service Virtualisation en.wikipedia.org/wiki/Service_virtualization

• Record request/response
• Store to be able to serve up

mocks later
• Tests runs independent

from back-end systems
• Same data is used in each

test run

+ Test data search!
+ Response modification!

Sum-up
• Reliable automated testing

-> The core of Continuous Delivery

• Decouple tests from back-end integrations
• Avoid hard-coded mocks
• Make test data searchable!
• Let tests modify test data if necessary!

• Build yourself based on open-source components!

