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~50 dev/test in 6 teams



~500.000 lines of code



~200 automated processes

2 to 150 conditions in each

~4.100 conditions in total



a few ways in

~25 outgoing integrations

~100 outgoing SOAP/REST calls



~5.400 automated system tests

~7 h execution time



~Continuous Delivery ->   
“Frequent releases”

smoke test on every commit
full test run every night

delivery to production every week



But
why?



“Always right, at the right time”

“Frequent releases” 
-> Steady flow of improvements
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The Dependency Problem
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- How to find proper test data?



The Bubble
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The Growing Problem
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• Not enough test data

• Inflexible data

• Hard to change

• Mock-files growing very large

• Mock replacing parts of SUT



TestLocal.mock
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TestLocal.mock
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The Hard-coded Problem
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• Readability – which values are 

important for this test?

• Hard work as APIs changes

• Still hard to find new test data



The Decoupled Solution
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The Decoupled Solution
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The Decoupled Solution
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GET gl2search_ah-18_10/_search
{
"query": {"match_all": {}}  
}
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The Decoupled Solution
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The Decoupled Solution
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Service Virtualisation en.wikipedia.org/wiki/Service_virtualization

• Record request/response
• Store to be able to serve up 

mocks later
• Tests runs independent 

from back-end systems
• Same data is used in each 

test run

+ Test data search!
+ Response modification!



Sum-up
• Reliable automated testing 

-> The core of Continuous Delivery

• Decouple tests from back-end integrations
• Avoid hard-coded mocks
• Make test data searchable!
• Let tests modify test data if necessary!

• Build yourself based on open-source components!




