

Knowing you test really efficiently

Roman Jurkech

SAST Stockholm Q4 www.stest.com 2014-12-04

Questions you may have to answer one day...

- How good your testing is?
- Is testing of the current release better than the previous one?
- Is testing in our project better than in other projects?
- How much testing is enough?
- Are we testing too little?
- Are we testing too much?
- What is the actual benefit of testing for business?
- What is the return on investment for our testing?
- Why shouldn't I just fire all of you???

- Quantitative
 - Defects which (after fix and retest) did not get to the next stage
 - Cost savings

- Qualitative
 - Improved reputation
 - Increase in trust
 - Prevention of legal disputes
 - Decreased risk of project or product failure

Which project has the most efficient testing?

Fictiona	l examp	ot real	pro	ects
ıl exam _l			ot real	ot real proj

Project		Α		3	(
System testing						
Testing period (number of days)	30		60		40	
Testers	4		5		7	
Effort (man-days)	93		250		266	
Number of planned test cases	480		1283		918	
Number of executed test cases	417	87%	1067	83%	894	97%
Requirement coverage (by test cases)		96%		88%		98%
Number of detected defects	323		592		720	
Number of resolved defects	302	93%	519	88%	695	97%
Number of closed defects	297	92%	491	83%	683	95%
Number of duplicates	18	6%	53	9%	33	5%
Average number of test cases per tester	80,75	25%	118,4	20%	102,9	14%

All of the above is nice, however:

- How successful were we in terms of discovered defects?
- How much money we saved because of testing?

Indicators displayed here will not give you answers to any of those questions!

Defect Detection Percentage (DDP)

- How to calculate DDP (basic variant):
 - 1. Count DDDT defects discovered during testing
 - 2. Count DDAT defects discovered after testing (usually after live release)

Calculating Defect Detection Percentage

Fictional examples, not real projects!

Project	A		В	3	C	1
System testing						
Testing period (number of days)	30		60		40	
Testers	4		5		7	
Effort (man-days)	93		250		266	
Number of planned test cases	480		1283		918	
Number of executed test cases	417	87%	1067	83%	894	97%
Requirement coverage (by test cases)		96%		88%		98%
Number of detected defects	323		592		720	
Number of resolved defects	302	93%	519	88%	695	97%
Number of closed defects	297	92%	491	83%	683	95%
Number of duplicates	18	6%	53	9%	33	5%
Average number of test cases per tester	80,75	25%	118,4	20%	102,9	14%
Acceptance testing						
Number of detected defects	81		168		233	
First 6 months of production						
Number of detected defects	26		84		106	
		·				
Total number of discovered defects	430		844		1059	
Defect detection rate during system testing		75%		70%		68%

D., . !

- Cost Savings:
 - Calculate cost of testing
 - 2. Calculate cost of fixing defects discovered during testing
 - Calculate cost of fixing defects discovered during later stages of software development life cycle
 - 4. Calculate cost savings achieved by testing

Fictional examples, not real projects!

Average hourly rate:

30€

Defect detection phase	Average effort required to fix one defect	Cost of defect fix		
Requirement engineering	1 mh	30 €		
Technical design	2 mh	60 €		
Unit testing	3 mh	90 €		
System testing	4 mh	120 €		
Acceptance testing	8 mh	240 €		
Production	16 mh	480 €		

Calculating savings

Fictional examples, not real projects!

Defect detection during	Average effort required to fix one defect							
Requirement engineering							1 mł	
Technical design							2 mł	
Unit testing							3 mł	
System testing							4 mł	
Acceptance testing							8 mł	
Production							16mh	
Average hourly rate							30€	
Cost of system testing	93 MDs	*	8 h	*	30€	=	22320€	
Cost of defect fixing during system testing	323 defects	*	4 h	*	30€	=	38760€	
Total cost of system testing and defect fixing							61080€	
Cost of fixes for defects discovered during acceptance esting	323 defects	*	8 h	*	30€	=	77520€	
Cost of fixes for defects discovered during production	323 defects	*	16 h	*	30€	=	155040€	

Minimal calculated savings achieved by system testing16440 €21%Maximal calculated savings achieved by system testing93960 €61%

Calculating savings

В

Fictional examples not real projects!

Average effort required to fix one defect
1 mł
2 mł
3 mł
4 mł
8 mł
16 mł
30€
•
250 MDs * 8 h * 30 € = 60000 €
592 defects * 4 h * 30 € = 71040 €
131040€
592 defects * 8 h * 30 € = 142080 €
592 defects * 16 h * 30 € = 284160 €

11040€ 153120€

8%

54%

Minimal calculated savings achieved by system testing

Maximal calculated savings achieved by system testing

Calculating savings

Fictional examples not real projects!

Average effort required to fix one defect						
1 ml						
2 ml						
3 ml						
4 ml						
8 ml						
16 ml						
30€						
266 MDs * 8 h * 30 € = 63840 €						
720 defects * 4 h * 30 € = 86400 €						
150240€						
720 defects * 8 h * 30 € = 172800 €						
720 defects * 16 h * 30 € = 345600 €						

22560€ 13% 195360€

Minimal calculated savings achieved by system testing

Maximal calculated savings achieved by system testing

Which project has the most cost effective system testing?

Fictional examples, not real pro-						
Project		A	В		С	
Cost of system testing	223	320€	60000	€	63840 €	
Cost of defect fixing during system testing	387	760€	71040	€	86400 €	
Total cost of system testing and defect fixing)80€	131040	€	150240 €	
Cost of fixes for defects discovered during acceptance testing	775	520€	142080	€	172800€	
Cost of fixes for defects discovered during production		040€	284160	€	345600 €	
Minimal calculated savings achieved by system testing	164	140€	11040	€	22560€	
Maximal calculated savings achieved by system testing		960€	153120	€	195360€	
Minimal calculated % savings achieved by system testing	21	%	8%		13%	
Maximal calculated % savings achieved by system testing	61	%	54%		57%	

- Expanding the DDP to multiple stages of testing we measure it for:
 - Unit testing
 - System testing
- After system testing the product goes live
- DDP is the number of defects found by a test level, divided by the number found by that test level and any other means afterwards (ISTQB Glossary)
- Application seems straightforward
- Analysis and understanding of results might be tricky

- There are 200 defects hidden in the first release of our project and testing delivers the following:
 - ➡ Unit testing 100 defects DDP=100/200=50%
- 5 20 defects (10%) are discovered only in production

- Amazing thing happens and there are 200 defects hidden in this release AGAIN!
- However, a greatly skilled programmer Lucy joined the company
- Lucy extended unit tests and discovered 10 additional defects which would have gotten to production so we end up with:
 - Unit testing 110 defects DDP=110/200=55% (up by 5%)
 - System testing 80 defects DDP=80/90=89% (up by 9%)
- And we have only 10 defects (=5%) getting into production now
- Nice effort from Lucy but the system testers really killed it! Or did they?

- Another release, but 200 defects YET again!
- Lucy was a bit angry after the last release, she put so much effort into her unit tests but the system testing guys received all the fame and glory
- She worked twice as hard for this release and implemented even more unit tests but they catch 20 defects which would be previously discovered during system test stage:
 - Unit testing 130 defects DDP=130/200=65% (up by 10% this time)
 - System testing 60 defects DDP=60/70=86% (down by 3%).
- Looks like Lucy really did it this time! Or did she?

Extremely high DDP can mean several things:

- Testing is fantastic, everyone should get a bonus!
- Is anyone even using the system? At all????
- Are we counting the numbers right?

Very low DDP could implicate:

- ☼ Testing is horrible, everyone is fired!
- We don't have sufficient resources for testing (time, manpower...)
- 5 Testing has no clue about the product due to missing or vague requirements.

- It is not as easy to implement, use and interpret as it might look.
- Start "small", just count all the testing before release, get to more structured measurement later.
- Decide amount of time after "live" to include into DDP e.g. 1, 3, 6 months
- Defect severity can play important part you may decide to measure only certain severity level(s) or measure them separately.
- Once you establish satisfactory DDP measuring procedures, use them consistently.
- Monitor trends over time it can give you many insights. DDP will not only tell you how good your testing is but also how external factors affect your testing.
- Using historical DDP rates to make prediction possible, but it must not be just taken and used "as is"!

DDP can be skewed, both intentionally and unintentionally:

- Purposeful over-reporting of defects by the test team duplicates, defect reports without any value, etc.
- Manipulating reports of defects from time after live release.
- Enhancements and feature requests can be reported as defects.
- Obscure defects unrelated to the most recent release are reported.

- Maturity of the project both extreme ends of the spectrum might be unsuitable, e.g.:
 - Project which has just started, has no live release in sight.
 - Project in maintenance mode with very little development.
- Size of the project it can be just too small to make sense.
- Are your defect tracking procedures ready for DDP?
 - Ideally your tracking system should be able to support automatic calculation of DDP if configured properly.
- ⇒ Don't rely on DDP only there are other lovely test metrics ☺

- Whenever it makes sense, collect data which enables you to measure test efficiency.
- Strive to describe benefits of testing from the business point of view.
- You can do no wrong with a few hard numbers saved money speaks very loud and some colorful charts can do wonders at management meetings ©
- Try to do measurement at all stages of testing.
- DDP measured should be interpreted with cool head, you need to consider circumstances and avoid "traps".

Questions?