# **Measuring the Value of Testing**

Prepared and presented by

# **Dorothy Graham**

email: info@dorothygraham.co.uk

www.DorothyGraham.co.uk

© Dorothy Graham 2009

**DG** 

Measuring the value of testing

#### **Contents**

- · how can we measure the value of testing?
  - what are our objectives?
    - find defects, gain confidence, assess risk
  - how can we measure against those objectives?
  - effectiveness measures
    - DDP (Defect Detection Percentage)

useful,

confidence-based

easy to do

- risk-based
- cost and efficiency

DG

## DDP: what you need to have

- · do you keep track of defects?
  - defects found in testing
    - · different test stages,
      - e.g. system test, user acceptance test
    - · different releases
      - e.g. testing for an incremental release or Sprint
  - defects found in live running
    - reported by users / customers
- can you find these numbers from a previous project and your current project?
- do you have a reasonable number of defects found?

if so, you can use DDP to measure your test effectiveness



# **Defect Detection Percentage (DDP)**

defects found by this testing total defects including those found afterwards

- "this" testing could be
  - a test stage, e.g. component, integration, acceptance, regression, etc.
  - testing for a function, subsystem or defect type
  - all testing for a system
  - testing of a sprint or increment

DG





## What is your DDP?

- How many bugs found in testing for the system or area that is now live?
- How many bugs found since it went live?
- Your DDP will be:
  - guaranteed to be
    - between 0% and 100%
  - vour actual number doesn't matter a lot
    - · it's how it changes over time

**DG** 

| Project or App. | Months      | DDP       | DDP Status       | Comments               |
|-----------------|-------------|-----------|------------------|------------------------|
| Before N        | ew Testing  | n Process |                  |                        |
| S4              |             | 50%       | <b>ESTIMATED</b> |                        |
| After Nev       | v Testing F | Process   |                  |                        |
| R1              | 3           | 81%       | FINAL            | Major re-engineering   |
| LBS             | 4           | 91%       | FINAL            |                        |
| CP              | 7           | 100%      | FINAL            | Reporting System       |
| DS              | 3           | 95%       | FINAL            | 3 2,000                |
| APC             | 4           | 93%       | FINAL            |                        |
| ELCS            | 4           | 95%       | FINAL            | Eur impl. of US system |
| SMS             | 3           | 96%       | FINAL            | Enhancement Release    |
| С               | 4           | 96%       | FINAL            |                        |
| E7 (US)         | 5           | 83%       | FINAL            | Global Enhancements    |
| E7 (Eur)        |             | 97%       |                  | Global Enhancements    |



#### What does it mean?

- DDP is very high ( > 95%)
  - testing is very good?
  - system not been used much yet?
  - next stage of testing was very poor?
    - e.g. ST looks good but UAT was poor, ST after UAT is high
      but live running will find many defects!
- DDP is low (< 60%)
  - testing is poor?
  - requirements were very poor, affecting tests?
  - poor quality software (too many to find in the time)?
  - deadline pressure testing was squeezed?

**DG** 

11

## **DDP** benefits

- · DDP can highlight
  - test process improvements
  - the effect of severe deadline pressure
  - the impact of overlapping test phases
- · can raise the profile of testing
- is applicable over different projects
  - reflects testing process in general
- can give on-going monitoring of testing

DG

# **Options for measuring DDP**

- what to measure
  - simplest: all test defects / all defects so far
  - by severity level

e.g. eliminate duplicates first?

- how "deep" to go?
  - deeper levels give more detailed information
  - deeper levels more complex to measure
- · advice: start simple
  - simple information is much better than none
  - learn from what information you have

**DG** 

13

## How to start using DDP

- · suggested first step
  - calculate DDP for a release that is now live
- what DDP to measure first?
  - most people start with System Test
  - consider looking at highest severity only to start
    - or two DDPs, one for high severity, one for all defects
- · getting data from live running
  - if you don't normally have live defect data, ask for it
- data collection & calculation should be easy / automatic
  - get your test management tool or defect tracking tool to calculate it for you automatically

Measuring the value of testing

#### **Contents**

- how can we measure the value of testing?
  - what are our objectives?
  - how can we measure against those objectives?
  - effectiveness measures
    - DDP
- · confidence-based
- risk-based
- cost and efficiency

**DG** 

#### Confident about what?

- · the system being tested
  - will be usable will meet a business need
  - will do the right things
  - will be reliable (not fail in operation)
- testing has been adequate
  - right areas tested
  - right depth of testing for critical / non-critical areas
  - testing done correctly (process followed)
- ok to release?

DG

## **Consensus-based confidence**

ask: how confident are you?

- 0 no knowledge at all
- 1 not confident
- 2 some confidence
- 3 reasonably confident
- 4 very confident
- 5 absolutely certain-

consensus from a number of knowledgeable [and honest] people (users, testers, developers)

- multiply by each functional area (function points?)
- multiply by a coverage measure
- pre-determine acceptable level overall / critical areas
- monitor what happens (was confidence overestimated?)

**DG** 

17

## **Confidence measurement examples**

| Question       | target | confidence rating |  |
|----------------|--------|-------------------|--|
| Reliability?   | 4.5    | 0.2               |  |
| Usable?        | 3.5    | 2.7               |  |
| Tested enough? | 4.0    | 4.1               |  |

| System Area   | target | confider<br>users | nce rating<br>testers |
|---------------|--------|-------------------|-----------------------|
| Data entry    | 4.0    | 2.4               | 4.1                   |
| Order process | 4.5    | 3.3               | 2.9                   |
| Batch         | 4.0    | 4.1               | 3.9                   |
| MIS           | 3.5    | 1.9               | 4.0                   |

DG





#### Measuring the value of testing

### **Contents**

- how can we measure the value of testing?
  - what are our objectives?
  - how can we measure against those objectives?
  - effectiveness measures
    - DDP
    - · confidence-based
    - risk-based



DG

21

## **Measuring test efficiency (defect-based)**

- do you know these numbers?
  - cost of testing activities (e.g. work-hours)
  - number of defects found
  - cost of fixing defects in testing and after release
- measures:
  - cost = work-hours / defect found
  - efficiency = defects found per work-hour
  - cost of defects found
  - potential savings from improving testing

**DG** 

# Measuring cost & efficiency - example 1

- 100 hours testing effort, found 20 defects
  - cost: 5 hrs/defect
  - efficiency: 0.2 defects/hour
- 100 hours testing effort, found 200 defects
  - cost: 0.5 hrs/defect
  - efficiency: 2 defects/hour
- which is better?
  - not enough information!



## "Testing is expensive"

- compared to what?
- what is the cost of NOT testing, or of defects missed that should have been found in test?
  - cost to fix defects escalates the later it is found
  - poor quality software costs more to use
    - · users take more time to understand what to do
    - · users make more mistakes in using it
    - morale suffers
    - => lower productivity
- do you know what it costs your organisation?

**DG** 25

#### What do software faults cost?

- have you ever accidentally destroyed a PC?
  - knocked it off your desk?
  - poured coffee into the hard disc drive?
  - dropped it out of a 2nd story window?
- how would you feel?
- · how much would it cost?

| Hypothetical Cost - 1        |           |             |  |
|------------------------------|-----------|-------------|--|
| (Loaded Salary cost: 500/hr) |           |             |  |
| Cost                         | Developer | <u>User</u> |  |
| - detect ( .5 hr)            |           | 250         |  |
| - report ( .5 hr)            |           | 250         |  |
| - receive & process (1 hr)   | 500       |             |  |
| - assign & bkgnd (4 hrs)     | 2000      |             |  |
| - debug ( .5 hr)             | 250       |             |  |
| - test bug fix ( .5 hr)      | 250       |             |  |
| - regression test (8 hrs)    | 4000      |             |  |
|                              | 7000      | 500         |  |
| G                            |           |             |  |



| Γ <sub>H</sub> ν | pothetical Cost - 3             |                |    |
|------------------|---------------------------------|----------------|----|
| 1                | Cost                            | Developer User |    |
| ı                |                                 | 10.000 500     |    |
|                  | (suppose affects only 5 users)  |                |    |
| l                | - work x 2, 1 wk                | 40000          |    |
|                  | - fix data (1 day)              | 3500           |    |
|                  | - pay for fix (3 days maint)    | 7500           |    |
|                  | - regr test & sign off (2 days) | 7000           |    |
|                  | - update doc'n / inform (1 day) | 3500           |    |
|                  | - double check + 12% 5 wks      | 50000          |    |
|                  | - admin (+7.5%)                 | <u>8000</u>    |    |
|                  | Totals                          | 10.000 120.000 |    |
| DG               |                                 |                | 29 |



## How expensive for you?

- · do your own calculation
  - calculate cost of testing
    - people's time, machines, tools
  - calculate cost to fix faults found in testing
  - calculate cost to fix faults missed by testing
- estimate if no data available
  - your figures will be the best your company has!
  - when challenged ...

DG

Measuring the value of testing

# **Summary: Key Points**

- what determines the value of testing?
  - test objectives (find defects, gain confidence, assess risk)
- · the value of testing can be measured by
  - Defect Detection Percentage (DDP)
  - (consensus-based) confidence
  - risk-based monitoring
- testing should always give value for money
  - cost of testing, fixing during test, fixing after release
  - measure, learn and improve

DG

32

## More information on DDP (slides & exercises)

- download from www.DorothyGraham.co.uk
- discussion on my blog: http://dorothygraham.blogspot.com

Further questions / comments: <a href="mailto:info@dorothygraham.co.uk">info@dorothygraham.co.uk</a>

 $\mathbf{DG}$