
2 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

investigate what practitioners refer to when
they talk about unit testing. Based on this com-
mon understanding, I also investigated unit
testing practices’ strengths and weaknesses.

The survey revealed a consistent view of
unit testing’s scope, but participants didn’t
agree on whether the test environment is an
isolated harness or a partial software system.
Furthermore, unit testing is clearly a developer
issue, both practically and strategically. Nei-
ther test management nor quality management
seem to impact unit testing strategies or prac-
tices. Unit tests are structural, or white-box
based, but developers rarely measure their
completeness in terms of structural coverage.
Most of the companies I surveyed desired unit
test automation but had trouble spreading
good practices across companies.

This survey is an indication of unit testing
in several companies. You can use the ques-
tionnaire at your own company to clarify
what you mean by unit testing, to identify the
strengths and weaknesses of your unit testing
practices, and to compare with other organi-
zations to improve those practices.

The survey
SPIN-syd is a noncommercial network fo-

cused on software process improvement issues.
It comprises representatives from 50 companies
with software as a major part of their business.
The companies range from consultancy firms
with one employee to regional branches of
multinational companies with hundreds of de-
velopers. The network represents various appli-
cation domains with a focus on embedded sys-
tems. Lund University researchers and PhD
students also belong to the network. The net-
work has a monthly three-hour meeting and oc-
casionally launches working groups around spe-
cific themes. Typically, 10 to 15 companies are
represented at each monthly meeting, depending
on the topic and the companies’ workloads.

We conducted the survey at two meetings.
During the first meeting, we held a focus
group discussion about unit testing. Partici-
pants included 17 representatives from 12
companies, the moderator (a software quality
manager), and the secretary (me).

Table 1 lists the participating companies’
characteristics.

focus
A Survey of Unit Testing
Practices

U
nit testing is testing of individual units or groups of related
units.”1 You know the definition by the book, but what does it
mean to you? What are a company’s typical strengths and weak-
nesses when applying unit testing? Per Beremark and I surveyed

unit testing practices on the basis of focus group discussions in a software
process improvement network (SPIN) and launched a questionnaire to val-
idate the results. I aimed to go beyond standard terminology definitions and

software testing

Per Runeson, Lund University

Companies
participated in a
survey to define
unit testing and
evaluate their
strengths and
weaknesses at
applying it. Others
can use the survey
to judge and
improve their
own practices.

Eight representatives from seven of those
companies took part in the subsequent survey,
along with representatives from seven new
ones. The participating companies represent
automation, banking, case tools, information
systems, health care, transportation, and tele-
com. Most of the consulting companies have
their primary occupation in telecom. The par-
ticipants, who range from testers to quality
managers, are interested in testing and soft-
ware quality issues in general. Of particular
interest for unit testing practices, one com-
pany is developing safety-critical software,
and another uses agile development methods.2

Figure 1 outlines the procedures for con-
ducting the survey:

1. The participants each spent a few minutes
reflecting on a question and taking notes
on a chart.

2. Each participant presented his or her view
of the question, and the group discussed
the results with the moderator’s input.

3. After the meeting, I documented the find-
ings and fed them back to the participants
for review.

4. I later qualitatively analyzed the findings us-
ing Zachman’s framework (see the sidebar).
The results constitute this article’s core.

We initiated the focus group discussions
around three themes:

■ What is unit testing?
■ What are the participants’ strengths re-

garding unit testing?
■ What are the participants’ problems re-

garding unit testing?

Three steps comprised the second phase

5. I prepared a survey questionnaire on the
basis of the focus group discussions.

6. Participants filled out the questionnaire in
a SPIN monthly meeting or via email, with
the main purpose of validation (that is, de-
termining whether the finding is unique to
a single company or widespread in the
community).

7. Finally, I analyzed the questionnaire re-
sponses, primarily using descriptive statistics.

The questionnaire consisted of 26 ques-
tions on what unit testing is and 24 questions

on its strengths and weaknesses in the respon-
dent’s organization (see the sidebar “Ques-
tionnaire Instrument” on page 25). Answers
were given on a five-level Likert scale—that is,
on a scale from “strongly agree” to “strongly
disagree” and “very good” to “very bad.” All
questions had a “not applicable” option.

The questionnaire responses indicate agree-
ment between respondents. The analysis com-
pares the focus group results and the question-
naire results. Given the number of respondents,
I couldn’t compare individual companies or ap-
plication domains.

What is unit testing?
Tim Koomen and Martin Pol define a unit

test as “a test, executed by the developer in a
laboratory environment, that should demon-
strate that the program meets the require-
ments set in the design specification.”3 James
Whittaker states that “unit testing tests indi-

J u l y / A u g u s t 2 0 0 6 I E E E S O F T W A R E 2 3

Table 1
Companies represented in the focus group meeting

and the questionnaire
Company Application domain Size* Participants in Participants in

focus group questionnaire

1 Telecom Large 3 1

2 Automation Medium 3 2

3 Case tools Small 2 1

4 Information systems Large 1 1

5 Banking Medium 1 1

6 Consulting Medium 1 0

7 Health care Medium 1 1

8 Health care Medium 1 0

9 Consulting Small 1 0

10 Information systems Small 1 0

11 Consulting Extra small 1 0

12 Consulting Extra small 1 1

13 Case tools Large 0 1

14 Telecom Large 0 1

15 Banking Medium 0 1

16 Consulting Medium 0 1

17 Consulting Medium 0 1

18 Telecom Medium 0 1

19 Transportation Medium 0 1

Total 17 15

*Number of developers in the surveyed company: extra small is 1, small is 2–9, medium is 10–99, and large 100–999.

vidual software components or a collection of
components. Testers define the input domain
for the units in question and ignore the rest of
the system. Unit testing sometimes requires the

construction of throwaway driver code and
stubs and is often performed in a debugger.”4

Because verbal definitions of unit testing al-
ready exist, I didn’t restrain the discussion as
such. Instead, I aimed for a broader under-
standing of what unit test means and what role
it plays in an organization. I report the results,
structured according to Zachman’s frame-
work, except that no observations were made
regarding the location dimension (where). Fig-
ure 2 (page 26) summarizes the questionnaire
responses. For each item, I first report the fo-
cus group discussions and then the question-
naire results. (Throughout this article, Qn.m
refers to question number m in Figure n.)

What?
Unit testing means testing the smallest sepa-

rate module in the system. Some people (such
as Koomen and Pol3) stress that it’s the smallest
specified module, but opinions differ about the
need for specifications. Regardless, unit testing
is technically oriented, with in/out parameters.

Nothing from the focus group discussions
contradicted this definition. The only varia-
tion was whether developers should specify
modules and tests. Nonetheless, the unit test-
ing practice is sometimes different.

The questionnaire confirmed that respon-
dents considered unit tests to be technical tests
focused on the system’s smallest units (Q2.1–3).
Many disagreed whether they should execute
the unit test in a scaffolding environment or
conduct it in an almost-complete system envi-
ronment (Q2.4). But according to Whittaker,
unit testing should “ignore the rest of the sys-
tem.”4 So, it can be run in the complete system
environment, focusing on the unit under test
and ignoring the rest.

The focus group attendants who also re-
sponded to the questionnaire agreed on the
definitions to a larger extent than the other
respondents.

How?
From the focus group discussions, I found

that companies conduct unit testing on the ba-
sis of the program’s structure (that is, white-
box or grey-box testing). They want the test
cases to be repeatable and also automated
with respect to test execution and result
checking. They can conduct unit testing in the
form of test-driven design.5

The questionnaire indicated that structural

2 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

John Zachman presented a framework for analyzing information systems
architectures.1 The framework has six categories—what, how, where, who,
when, and why—although these terms weren’t originally used. For each
category, questions are defined and tailored to the domain under investiga-
tion. Although Zachman originally intended the framework for information
systems development, he proposed that it might also be used for creating
new approaches to system development.

Joseph Feller and Brian Fitzgerald used the framework to analyze open
source development,2 and Peter Greberg and I used the same principles to
analyze Extreme Programming and the Rational Unified Process.3

In the main article, I use Zachman’s framework to structure the outcome
of the focus group meetings and to define the validation questionnaire.

References
1. J.A. Zachman, “A Framework for Information Systems Architecture,” IBM Systems J., vol.

26, no. 3, 1987, pp. 276–292.
2. J. Feller and B. Fitzgerald, “A Framework Analysis of the Open Source Development Para-

digm,” Proc. 21st Int’l Conf. Information Systems, ACM Press, 2000, pp. 58–69.
3. P. Runeson and P. Greberg, “Extreme Programming and Rational Unified Process—Contrasts

or Synonyms?” Experience Session Proc. European Software Process Improvement and Inno-
vation Conf. (EuroSPI 05), John von Neumann Computer Soc., 2005, pp. 1.1–7.

Zachman’s Framework

 Unit testing Analysis
• Definition
• Strengths
• Problems

• What?
• How?
• Where?
• Who?

Q's

Note

1. Individual
reflection

2. Focus group
discussion

Note
Note

3. Document
and structure

4. Analysis

5. Questionnaire
preparation

7. Analysis6. Conduct

Q&A's
Q&A's

Q&A's

Figure 1. Survey
methodology overview.

basis is important (Q2.5), although it doesn’t
have to be formally measured through cover-
age measures (Q2.6). Regarding automation,
the automation’s execution is more important
than automatic result checks of test cases
(Q2.7–8). Furthermore, unit tests are docu-

mented in test code rather than in text
(Q2.9–10).

Who?
The focus group agreed that developers and

development teams conduct unit tests. How-

J u l y / A u g u s t 2 0 0 6 I E E E S O F T W A R E 2 5

For each question, respondents chose the best answer from
the following scale: “strongly agree,” “agree,” “neutral,” “dis-
agree,” “strongly disagree,” or “not applicable.”

To what extent do you agree with the statements
below?

What is a unit test?
1. A test of the smallest separate unit
2. A technical test with in/out parameters
3. A test that focuses on separate functions
4. A test that must execute separately from rest of the system

How is a unit test conducted?
5. Based on the program structure
6. Monitored by coverage measurements
7. Automated execution
8. Automated follow-up

How do developers conduct the unit tests?
9. Specified in text
10. Specified in test code
11. Executed by developers themselves

Who decides how the unit test shall be conducted?
12. Developers/testers
13. The test department
14. The quality department

When are the unit tests executed?
15. For each compilation/system build
16. Many times daily
17. At least daily
18. At least weekly

How much time does it take to run all unit tests?
19. Seconds
20. Minutes
21. Hours

Why are unit tests conducted?
22. To ensure that the unit functions as expected
23. To accept a unit from other sources
24. To specify a unit (test first)

25. To improve the product quality in general
26. To meet customer requirements

For each question, respondents chose the best answer from
the following scale: “very good,” “good,” “neutral,” “bad,”
“very bad,” or “not applicable.”

How does the following function in your
organization?

What?
1. Identify suitable units
2. Test GUI components
3. Test data-dependent functions
4. Test depending on external code
5. Test real-time aspects
6. Test case selection
7. Maintenance of test code

How?
8. Specify good unit test cases
9. Automate unit testing
10. Build/tailor frameworks for unit testing
11. Integration with build systems
12. Integration with configuration management systems
13. Integration to trouble-reporting systems
14. Unit test documentation
15. Scaffolding (stubs and drivers)
16. Coverage or other test progress measurements

Who?
17. Developers execute all needed unit tests
18. Unit testing external units is sufficient
19. Testing has sufficient priority and status
20. Developers have sufficient competence and skills to con-

duct unit testing

When?
21. I execute the unit test frequently enough
22. I have clear criteria to judge when the unit test is finished

Why?
23. The developers are motivated to execute unit tests
24. I know that I gain more than the cost for time spent on

unit testing

Questionnaire Instrument

ever, they disagreed whether unit tests must be
specified.

The questionnaire confirms that the unit
tests are the development organization’s con-
cern (Q2.11–12). Neither the test organization
nor the quality organization has any say
(Q2.13–14). (Similarly, Koomen and Pol state
explicitly that the developers execute the unit
test,3 but this is implicit in other definitions.)

When?
The focus group mentioned that unit tests

give developers quick feedback. The group
didn’t discuss time in relation to project
phases, although unit tests are implicitly con-
nected to the implementation activities.

How often each company executed the unit
tests varied widely (Q2.15–18), as did the execu-
tion time. Most respondents said that running all
unit tests took just seconds or minutes, but some
respondents had unit test suites that took hours
to execute (Q2.19–21).

Why?
The focus group stated that unit testing’s

main focus is assuring the system’s functional-
ity. Unit testing doesn’t consider any extra-
functional aspects because it runs separately
from the system. For those executing unit tests
in a complete system environment, the distinc-
tion isn’t as clear. The group stressed that test-
ing verifies that a module has the functionality

a developer expects, which isn’t necessarily
what other stakeholders expect. In test-driven
design, unit tests define the problem and can
contribute to less complex solutions when ap-
plying refactoring.

The questionnaire confirms unit testing’s
functional focus (Q2.22). Unit testing’s pur-
pose is related to general quality improve-
ments (Q2.25). In a few cases, companies use
unit testing for internal acceptance (Q2.23) or
as a technical specification (Q2.24). In very
few cases do customers explicitly require unit
tests (Q2.26).

Unit testing strengths
The focus group members discussed their

strengths with regard to unit testing. The con-
versation was an honest sharing of good prac-
tices that other noncompetitive companies could
use. SPIN-syd’s tradition of openness between
peers as well as toward researchers and other ex-
ternal sources6 reduces the risk of people telling
success stories without a solid foundation.

I report the unit testing strengths according
to Zachman’s framework. For the question-
naire and the responses, see the sidebar
“Questionnaire Instrument” and figure 3, re-
spectively. This section discusses the positive
answers, and the next section discusses the
negative answers (Q3.12, 15, 17, 18). Real-
time issues weren’t applicable for many re-
spondents (Q3.5).

2 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

0

2

4

6

8

10

12

14

5.
Stru

ctu
ral

7.
Auto

mate
d e

xe
cu

tio
n

6.
Cov

era
ge

8.
Auto

mate
d f

oll
ow

-up

12
. D

ev
elo

pe
rs/

tes
ter

s

13
. T

es
t d

ep
art

men
t

14
. Q

ua
lity

 de
pa

rtm
en

t

15
. F

or
ea

ch
 bu

ild

19
. S

ec
on

ds

20
. M

inu
tes

Tim
e?

Who

de
cid

es
?

How
?

Strongly agree
Agree
Neutral
Disagree
Strongly disagree
Not applicable

1.
Small

es
t u

nit

2.
Te

ch
nic

al

3.
Fu

nc
tio

ns

4.
Sep

ara
te

9.
Spe

cif
ied

 in
 te

xt

10
. S

pe
cif

ied
 in

 te
st

co
de

11
. E

xe
cu

ted
 by

 de
ve

lop
ers

16
. M

an
y t

im
es

 da
ily

17
. A

t le
as

t d
ail

y

18
. A

t le
as

t w
ee

kly

21
. H

ou
rs

22
. U

nit
 fu

nc
tio

ns

23
. A

cc
ep

t u
nit

s

24
. S

pe
cif

y u
nit

25
. Im

pro
ve

 qu
ali

ty

26
. C

us
tom

er
req

uir
em

en
ts

Wha
t?

Whe
n?Who

co
nd

uc
ts?

Why
?

Figure 2. Response
frequencies on the
questionnaire regarding
unit test definitions
(Q2.1–26).

What?
The focus group participants considered it

a successful practice to unit test modules other
than the one under test. One company applies
test-driven design and has an automated unit
test suite that clearly reveals changes in other
modules. This indicates that unit tests are con-
ducted in an environment where other system
modules exist.

The questionnaire reveals that using unit
testing for external modules wasn’t common
practice but rather a single example (Q3.4).
Furthermore, most organizations can easily
identify units (Q3.1) and maintain unit test
code (Q3.7).

How?
Two companies in the focus group consid-

ered it a strength that they have set up a frame-
work for unit test automation. If this frame-
work has internal support, it will improve the
practice. Furthermore, unit testing should inte-
grate with the build system—that is, compa-
nies should automatically run a selected set of
test cases for every version of the system.

The questionnaire confirms that test au-
tomation and tailoring frameworks for unit
testing are successful practices (Q3.9–10). The
build system was judged neutral to very good
(Q3.11), and the specifications were consid-
ered neutral or good (Q3.8).

Who?
Although the focus group defined unit test-

ing as conducted by developers and develop-
ment teams, they also favored independent or
third-party unit tests. Companies could achieve
this by widening the unit testing scope some-
what—that is, enlarging the group of modules
under test and then allowing testing by both
their own development team and other teams.

Regarding testing competence, companies
considered the SPIN-syd forum for cross-com-
pany learning valuable. However, the ques-
tionnaire didn’t present competency as a
strength. The status and priority given to unit
testing were judged neutral (Q3.19).

When?
Continuous regression tests are a strength.

One company runs automatic tests every
night, including automatic results checking.
Another company runs regression tests when
refactoring the code. It also runs memory tests
continuously, ensuring that the basic function-
ality and characteristics are in place.

This practice isn’t widespread. The ques-
tionnaire shows that regarding unit test execu-
tion’s frequency, the answers range evenly over
the scale (Q3.21).

Why?
For single companies in the focus group,

J u l y / A u g u s t 2 0 0 6 I E E E S O F T W A R E 2 7

0

2

4

6

8

10

12

9.
Auto

mate
 te

sti
ng

10
. B

uil
d/t

ail
or

fra
mew

ork
s

11
. B

uil
d s

ys
tem

s

12
. C

on
fig

ura
tio

n

man
ag

em
en

t s
ys

tem
s

13
. T

rou
ble

 re
po

rti
ng

14
.D

oc
um

en
tat

ion

15
.S

ca
ffo

ldi
ng

16
. C

ov
era

ge

21
. F

req
ue

nc
y

22
. C

rit
eri

a

23
. M

oti
va

tio
n

24
. G

ain
 aw

are
ne

ss

Very good
Good
Neutral
Bad
Very bad
Not applicable

Whe
n?

How
?

1.
Ide

nti
fy

un
its

2.
GUI c

om
po

ne
nts

3.
Data

 de
pe

nd
en

cy

4.
Ex

ter
na

l c
od

e

5.
Rea

l-t
im

e

6.
Te

st
ca

se
 se

lec
tio

n

7.
Main

ten
an

ce

8.
Spe

cif
y t

es
t c

as
es

17
. D

ev
elo

pe
rs

ex
ec

ute
 al

l

18
. E

xte
rna

l u
nit

s

19
. P

rio
rit

y a
nd

 st
atu

s

20
. C

om
pe

ten
ce

 an
d s

kil
ls

Wha
t?

Who
?

Why
?

Figure 3. Response
frequencies on
questionnaire regarding
unit test strengths and
weaknesses (Q3.1–24).

The network’s
tradition of

openness is a
solid basis for

achieving a
satisfactory

picture of the
practitioners’

unit testing
problems.

the motivation for unit tests must accompany
external requirements (Q2.26). For example,
safety standards forced a company developing
safety-critical software to run automatic unit
tests. Now, when the tests are implemented,
the company is highly satisfied with them.

Another motivating factor is the use of ag-
ile methods. The test suites could function as a
technical specification, which is continuously
updated when the interfaces change.

Unit testing weaknesses
The focus group discussed weaknesses, and

I validated them in the questionnaire. Again,
the network’s tradition of openness is a solid
basis for achieving a satisfactory picture of the
practitioners’ unit testing problems.

What?
A common issue was testing GUI modules

(in particular, concerning automation). Also,
identifying units for test was a problem; the
objects under test tended to be “groups of re-
lated units” rather than “individual units.”1

Many companies desired test automation,
but those that started automation initiatives
soon accumulated large volumes of code. The
companies had to maintain this code due to
product evolution, requiring much effort.

Focus group members saw a unit testing
problem in testing modules that have or de-
pend on large data structures. It’s hard to cre-
ate a relevant test environment for modules in-
teracting with a complex system state or a
complex system environment.

The questionnaire confirmed the GUI prob-
lems (Q3.2), ranking it as the most problematic
area. On the contrary, companies judged unit
identification as “good” (Q3.1), while the focus
group considered it unclear. The questionnaire
labeled test automation “good” (Q3.9) and
data-dependent unit testing “neutral” (Q3.3).

How?
The focus group named documentation as

a problem. Without proper documentation,
repetitiveness is only informal. One proposed
solution is test automation, adding incentives
for keeping the test scripts up-to-date, but (of
course) at a cost.

Test frameworks were considered a key to
success, but they have integration problems.
Like any new software engineering approach,
it’s easier to get it to work when beginning

from scratch, which is rare because most proj-
ects build on legacy code.

The focus group considered test case selec-
tion for a continuous regression test a hard
task. The companies used no systematic ap-
proach to test selection but relied on the devel-
opers’ expertise and judgment, which might
mean executing too many or too few test cases.

Test metrics are scarce, so quantitative
methods weren’t used for test management to
a large extent. (An earlier survey also found
this to be true.6)

The questionnaire responses were quite neu-
tral regarding documentation (Q3.14). Regard-
ing test case selection, the respondents were
neutral (Q3.6) but agreed that the state of cov-
erage and other progress measures were “bad”
(Q3.16). The same holds for trouble reporting
(Q3.13).

Who?
The focus group considered unit testers’

competency very important. Combined with a
low-status attitude toward testers, it’s hard to
find the person with the right knowledge and
skill. By definition, developers themselves con-
duct the unit tests. They know the modules
very well—perhaps too well to set up a set of
critical tests.

Few companies had a strategy for unit test-
ing. Instead, the developers themselves defined
the ambitions for unit testing, leading to vary-
ing practices.

Responses were neutral to whether unit test-
ing competency is sufficient (Q3.20). Developer
motivation needs improvement (Q3.23).

When?
When do you know a module has been suf-

ficiently tested? Some focus group members
favored coverage criteria, but others advo-
cated giving priority to test cases’ quality (that
is, their ability to reveal faults).

The questionnaire responses showed no
clear tendency toward a specific stopping cri-
terion, although there was a slight balance to-
ward lack of well defined and monitored cri-
teria (Q3.16, 22).

Why?
How much time should companies spend

on unit testing? How much should they devote
to automating unit testing? The focus group
discussed the trade-off between cost and gains,

2 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

concluding that it’s hard to judge. Test man-
agers need arguments and models to calculate
the return on the test investment, but no such
models exist.

The questionnaire makes clear that it’s diffi-
cult to motivate the developers to execute unit
tests (Q3.23). Also, there’s no explicit return
on investment calculation on whether the gains
outweigh the costs of unit testing (Q3.24).

The survey’s use
Table 2 summarizes the survey’s results.

How can we use these results? Are they valid
outside the surveyed organizations?

The respondents represent companies of dif-
ferent sizes and application domains, making
the results more externally valid (meaning that
the findings are valid outside the limited set of
surveyed companies). However, we should take
the results not as a universal view of unit test-
ing’s status but as a starting point for a univer-
sal discussion and analysis. We should use the
survey to help define what a company means by
“unit testing,” as a benchmark for judging a
company’s test performance, and as a starting
point for an improvement initiative.

A company with an unclear definition
of unit testing runs the substantial
risk of bad or inconsistent testing.

With a clear and shared understanding of unit
testing in a specific environment, different
stakeholders will likely understand and accept
their responsibilities. The first part of the
questionnaire can help support this goal.

When a company shares an understanding of
the definitions, the people can discuss the unit
testing practices’ strengths and weaknesses. It’s
important to start small in an improvement pro-
gram to gain sustainable improvements over
time.3,7 The second part of the questionnaire can
support a lightweight assessment to identify im-
provement needs. It can also serve as a basis for
comparing different noncompetitive compa-
nies—a feature successfully used in SPIN-syd.

Acknowledgments
I thank Per Beremark for initiating and moderat-

ing the focus group within SPIN-syd. Thanks to all
participants in the SPIN-syd network for contributing
to the survey and to Carina Anderson for reviewing
this article. The Swedish Research Council funded
this research under grant 622-2004-552 for a senior
researcher position in software engineering.

References
1. IEEE Std. 610.12-1990, Standard Glossary of Software

Engineering Terminology, IEEE, 1990.
2. D. Karlström and P. Runeson, “Combining Agile Meth-

ods with Stage-Gate Project Management,” IEEE Soft-
ware, vol. 22, no. 3, 2005, pp. 43–49.

3. T. Koomen and M. Pol, Test Process Improvement—A
Practical Step-by-Step Guide to Structured Testing, Ad-
dison-Wesley, 1999.

4. J.A. Whittaker, “What is Software Testing? And Why Is
It So Hard?” IEEE Software, vol. 17, no. 1, 2000, pp.
70–79.

5. K. Beck, Test Driven Development: By Example, Addi-
son-Wesley, 2003.

6. P. Runeson, C. Andersson, and M. Höst, “Test
Processes in Software Product Evolution—A Qualitative
Survey on the State of Practice,” J. Software Mainte-
nance and Evolution, vol. 15, no. 1, 2003, pp. 41–59.

7. D. Karlström, P. Runeson, and S. Nordén, “A Minimal
Test Practice Framework for Emerging Software Organ-
isations,” Software Testing, Verification and Reliability,
vol. 15, no. 3, 2005, pp. 145–166.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

J u l y / A u g u s t 2 0 0 6 I E E E S O F T W A R E 2 9

Table 2
Unit test definitions, strengths, and problems

according to the survey
Definitions Strengths Problems

What? Test of smallest unit Unit identification GUI test
or units Test of surrounding Unit identification

modules Test scripts and harness
maintenance
Data structures

How? Structure-based Test framework Documentation
Preferably automated Framework tailoring

Test selection
Test metrics

Where? Solution domain None found None found

Who? By developer Independent test Competency
Competence network Independence

Introduction strategy

When? Quick feedback Continuous regression test Stopping criteria

Why? Ensure functionality External requirement (safety) Cost versus value
Agile methods

About the Author

Per Runeson is a professor of software engineering at Lund University and the leader of
the Software Engineering Research Group. He is also a Swedish Research Council–funded sen-
ior researcher. His research interests include software development methods and processes,
particularly verification and validation methods. He received his PhD in software engineering
from Lund University. He’s an editorial board member of the Empirical Software Engineering
Journal and Journal of the Association of Software Testing. He’s a senior member of the IEEE.
Contact him at the Dept. of Communication Systems, Lund Univ., Box 118, SE-22100 Lund,
Sweden; per.runeson@telecom.lth.se.

